Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38586876

RESUMO

Muscle isometric torque fluctuates according to time-of-day with such variation owed to the influence of circadian molecular clock genes. Satellite cells (SC), the muscle stem cell population, also express molecular clock genes with several contractile related genes oscillating in a diurnal pattern. Currently, limited evidence exists regarding the relationship between SCs and contractility, although long-term SC ablation alters muscle contractile function. Whether there are acute alterations in contractility following SC ablation and with respect to the time-of-day is unknown. We investigated whether short-term SC ablation affected contractile function at two times of day, and whether any such alterations lead to different extents of eccentric contraction-induced injury. Utilizing an established mouse model to deplete SCs, we characterized muscle clock gene expression and ex vivo contractility at two times-of-day (morning 0700 h and afternoon, 1500 h). Morning-SC+ animals demonstrated ~25-30% reductions in tetanic/eccentric specific forces and, after eccentric injury, exhibited ~30% less force-loss and ~50% less dystrophinnegative fibers versus SC- counterparts; no differences were noted between Afternoon groups (Morning-SC+: -5.63 ± 0.61, Morning-SC-: -7.93 ± 0.61; N/cm2; p < 0.05) (Morning-SC+: 32 ± 2.1, Morning-SC-: 64 ± 10.2; dystrophinnegative fibers; p < 0.05). As Ca++ kinetics underpin force-generation, we also evaluated caffeine-induced contracture-force as an indirect marker of Ca++ availability, and found similar force reductions in Morning-SC+ vs SC- mice. We conclude that force-production is reduced in the presence of SCs in the morning but not the afternoon, suggesting that SCs may have a time-of-day influence over contractile-function.

2.
Geroscience ; 46(1): 1285-1302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37535205

RESUMO

Onset and rates of sarcopenia, a disease characterized by a loss of muscle mass and function with age, vary greatly between sexes. Currently, no clinical interventions successfully arrest age-related muscle impairments since the decline is frequently multifactorial. Previously, we found that systemic transplantation of our unique adult multipotent muscle-derived stem/progenitor cells (MDSPCs) isolated from young mice-but not old-extends the health-span in DNA damage mouse models of progeria, a disease of accelerated aging. Additionally, induced neovascularization in the muscles and brain-where no transplanted cells were detected-strongly suggests a systemic therapeutic mechanism, possibly activated through circulating secreted factors. Herein, we used ZMPSTE24-deficient mice, a lamin A defect progeria model, to investigate the ability of young MDSPCs to preserve neuromuscular tissue structure and function. We show that progeroid ZMPST24-deficient mice faithfully exhibit sarcopenia and age-related metabolic dysfunction. However, systemic transplantation of young MDSPCs into ZMPSTE24-deficient progeroid mice sustained healthy function and histopathology of muscular tissues throughout their 6-month life span in a sex-specific manner. Indeed, female-but not male-mice systemically transplanted with young MDSPCs demonstrated significant preservation of muscle endurance, muscle fiber size, mitochondrial respirometry, and neuromuscular junction morphometrics. These novel findings strongly suggest that young MDSPCs modulate the systemic environment of aged animals by secreted rejuvenating factors to maintain a healthy homeostasis in a sex-specific manner and that the female muscle microenvironment remains responsive to exogenous regenerative cues in older age. This work highlights the age- and sex-related differences in neuromuscular tissue degeneration and the future prospect of preserving health in older adults with systemic regenerative treatments.


Assuntos
Células-Tronco Adultas , Progéria , Sarcopenia , Masculino , Camundongos , Feminino , Animais , Progéria/genética , Modelos Animais de Doenças , Células-Tronco Adultas/metabolismo , Músculos/metabolismo
3.
Behav Sci (Basel) ; 13(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37503986

RESUMO

Physical activity of a sufficient amount and intensity is essential to health and the prevention of a sedentary lifestyle in all children as they transition into adolescence and adulthood. While fostering a fit lifestyle in all children can be challenging, it may be even more so for those with cerebral palsy (CP). Evidence suggests that bone and muscle health can improve with targeted exercise programs for children with CP. Yet, it is not clear how musculoskeletal improvements are sustained into adulthood. In this perspective, we introduce key ingredients and guidelines to promote bone and muscle health in ambulatory children with CP (GMFCS I-III), which could lay the foundation for sustained fitness and musculoskeletal health as they transition from childhood to adolescence and adulthood. First, one must consider crucial characteristics of the skeletal and muscular systems as well as key factors to augment bone and muscle integrity. Second, to build a better foundation, we must consider critical time periods and essential ingredients for programming. Finally, to foster the sustainability of a fit lifestyle, we must encourage commitment and self-initiated action while ensuring the attainment of skill acquisition and function. Thus, the overall objective of this perspective paper is to guide exercise programming and community implementation to truly alter lifelong fitness in persons with CP.

4.
Am J Physiol Cell Physiol ; 324(6): C1332-C1340, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184229

RESUMO

Skeletal muscle comprises approximately 50% of individual body mass and plays vital roles in locomotion, heat production, and whole body metabolic homeostasis. This tissue exhibits a robust diurnal rhythm that is under control of the suprachiasmatic nucleus (SCN) region of the hypothalamus. The SCN acts as a "central" coordinator of circadian rhythms, while cell-autonomous "peripheral" clocks are located within almost all other tissues/organs in the body. Synchronization of the peripheral clocks in muscles (and other tissues) together with the central clock is crucial to ensure temporally coordinated physiology across all organ systems. By virtue of its mass, human skeletal muscle contains the largest collection of peripheral clocks, but within muscle resides a local stem cell population, satellite cells (SCs), which have their own functional molecular clock, independent of the numerous muscle clocks. Skeletal muscle has a daily turnover rate of 1%-2%, so the regenerative capacity of this tissue is important for whole body homeostasis/repair and depends on successful SC myogenic progression (i.e., proliferation, differentiation, and fusion). Emerging evidence suggests that SC-mediated muscle regeneration may, in part, be regulated by molecular clocks involved in SC-specific diurnal transcription. Here we provide insights on molecular clock regulation of muscle regeneration/repair and provide a novel perspective on the interplay between SC-specific molecular clocks, myogenic programs, and cell cycle kinetics that underpin myogenic progression.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Diferenciação Celular , Homeostase , Músculo Esquelético/metabolismo , Relógios Circadianos/fisiologia
5.
J Am Heart Assoc ; 12(6): e027088, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36892048

RESUMO

Background Mitochondrial abnormalities exist in gastrocnemius muscle of people with peripheral artery disease (PAD). Whether abnormalities in mitochondrial biogenesis and autophagy are associated with greater ischemia or walking impairment in PAD is unknown. Methods and Results Protein markers of mitochondrial biogenesis and autophagy and the abundance of mitochondrial electron transport chain complexes were quantified in gastrocnemius muscle biopsies from people with and without PAD. Their 6-minute walk distance and 4-m gait speed were measured. Sixty-seven participants (mean age 65.0 years [±6.8], 16 [23.9%] women, 48 [71.6%] Black) were enrolled, including 15 with moderate to severe PAD (ankle brachial index [ABI] <0.60), 29 with mild PAD (ABI 0.60-0.90), and 23 without PAD (ABI 1.00-1.40). Abundance of all electron transport chain complexes was significantly higher in participants with lower ABI (eg, complex I: 0.66, 0.45, 0.48 arbitrary units [AU], respectively, P trend=0.043). Lower ABI values were associated with a higher LC3A/B II-to-LC3A/B I (microtubule-associated protein 1A/1B-light chain 3) ratio (2.54, 2.31, 2.15 AU, respectively, P trend=0.017) and reduced abundance of the autophagy receptor p62 (0.71, 0.69, 0.80 AU, respectively, P trend=0.033). The abundance of each electron transport chain complex was positively and significantly associated with 6-minute walk distance and 4-m gait speed at usual and fast pace only among participants without PAD (eg, complex I: r=0.541, P=0.008; r=0.477, P=0.021; r=0.628, P=0.001, respectively). Conclusions These results suggest that accumulation of electron transport chain complexes in gastrocnemius muscle of people with PAD may be because of impaired mitophagy in the setting of ischemia. Findings are descriptive, and further study in larger sample sizes is needed.


Assuntos
Mitofagia , Doença Arterial Periférica , Humanos , Feminino , Idoso , Masculino , Doença Arterial Periférica/diagnóstico , Caminhada/fisiologia , Índice Tornozelo-Braço , Isquemia , Proteínas Associadas aos Microtúbulos , Desempenho Físico Funcional
6.
Am J Physiol Cell Physiol ; 324(3): C614-C631, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622072

RESUMO

Children with cerebral palsy (CP), a perinatal brain alteration, have impaired postnatal muscle growth, with some muscles developing contractures. Functionally, children are either able to walk or primarily use wheelchairs. Satellite cells are muscle stem cells (MuSCs) required for postnatal development and source of myonuclei. Only MuSC abundance has been previously reported in contractured muscles, with myogenic characteristics assessed only in vitro. We investigated whether MuSC myogenic, myonuclear, and myofiber characteristics in situ differ between contractured and noncontractured muscles, across functional levels, and compared with typically developing (TD) children with musculoskeletal injury. Open muscle biopsies were obtained from 36 children (30 CP, 6 TD) during surgery; contracture correction for adductors or gastrocnemius, or from vastus lateralis [bony surgery in CP, anterior cruciate ligament (ACL) repair in TD]. Muscle cross sections were immunohistochemically labeled for MuSC abundance, activation, proliferation, nuclei, myofiber borders, type-1 fibers, and collagen content in serial sections. Although MuSC abundance was greater in contractured muscles, primarily in type-1 fibers, their myogenic characteristics (activation, proliferation) were lower compared with noncontractured muscles. Overall, MuSC abundance, activation, and proliferation appear to be associated with collagen content. Myonuclear number was similar between all muscles, but only in contractured muscles were there associations between myonuclear number, MuSC abundance, and fiber cross-sectional area. Puzzlingly, MuSC characteristics were similar between ambulatory and nonambulatory children. Noncontractured muscles in children with CP had a lower MuSC abundance compared with TD-ACL injured children, but similar myogenic characteristics. Contractured muscles may have an intrinsic deficiency in developmental progression for postnatal MuSC pool establishment, needed for lifelong efficient growth and repair.


Assuntos
Paralisia Cerebral , Contratura , Células Satélites de Músculo Esquelético , Humanos , Criança , Paralisia Cerebral/patologia , Músculo Esquelético/patologia , Contratura/patologia , Músculo Quadríceps/patologia , Células Satélites de Músculo Esquelético/patologia
7.
Vasc Med ; 28(1): 28-35, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36567551

RESUMO

BACKGROUND: This study evaluated the association of smoking with mitochondrial function in gastrocnemius muscle of people with peripheral artery disease (PAD). METHODS: Participants were enrolled from Chicago, Illinois and consented to gastrocnemius biopsy. Mitochondrial oxidative capacity was measured in muscle with respirometry. Abundance of voltage-dependent anion channel (VDAC) (mitochondrial membrane abundance), peroxisome proliferator-activated receptor-γ coactivator (PGC-1α) (mitochondrial biogenesis), and electron transport chain complexes I-V were measured with Western blot. RESULTS: Fourteen of 31 people with PAD (age 72.1 years, ABI 0.64) smoked cigarettes currently. Overall, there were no significant differences in mitochondrial oxidative capacity between PAD participants who currently smoked and those not currently smoking (complex I+II-mediated oxidative phosphorylation: 86.6 vs 78.3 pmolO2/s/mg, respectively [p = 0.39]). Among participants with PAD, those who currently smoked had a higher abundance of PGC-1α (p < 0.01), VDAC (p = 0.022), complex I (p = 0.021), and complex III (p = 0.021) proteins compared to those not currently smoking. People with PAD who currently smoked had lower oxidative capacity per VDAC unit (complex I+II-mediated oxidative phosphorylation [137.4 vs 231.8 arbitrary units, p = 0.030]) compared to people with PAD not currently smoking. Among people without PAD, there were no significant differences in any mitochondrial measures between currently smoking (n = 5) and those not currently smoking (n = 63). CONCLUSIONS: Among people with PAD, cigarette smoking may stimulate mitochondrial biogenesis to compensate for reduced oxidative capacity per unit of mitochondrial membrane, resulting in no difference in overall mitochondrial oxidative capacity according to current smoking status among people with PAD. However, these results were cross-sectional and a longitudinal study is needed.


Assuntos
Fumar Cigarros , Doença Arterial Periférica , Humanos , Idoso , Fumar Cigarros/efeitos adversos , Mitocôndrias/metabolismo , Músculo Esquelético/irrigação sanguínea
8.
Front Neurol ; 12: 735009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589051

RESUMO

Skeletal muscle contractile proteins require a constant supply of energy to produce force needed for movement. Energy (ATP) is primarily produced by mitochondrial organelles, located within and around muscle fibers, by oxidative phosphorylation that couples electron flux through the electron transport chain to create a proton gradient across the inner mitochondrial membrane that is in turn used by the ATP synthase. Mitochondrial networks increase in size by biogenesis to increase mitochondrial abundance and activity in response to endurance exercise, while their function and content reduce with constant inactivity, such as during muscle atrophy. During healthy aging, there is an overall decline in mitochondrial activity and abundance, increase in mitochondrial DNA mutations, potential increase in oxidative stress, and reduction in overall muscular capacity. Many of these alterations can be attenuated by consistent endurance exercise. Children with cerebral palsy (CP) have significantly increased energetics of movement, reduced endurance capacity, and increased perceived effort. Recent work in leg muscles in ambulatory children with CP show a marked reduction in mitochondrial function. Arm muscles show that mitochondrial protein content and mitochondria DNA copy number are lower, suggesting a reduction in mitochondrial abundance, along with a reduction in markers for mitochondrial biogenesis. Gene expression networks are reduced for glycolytic and mitochondrial pathways and share similarities with gene networks with aging and chronic inactivity. Given the importance of mitochondria for energy production and changes with aging, future work needs to assess changes in mitochondria across the lifespan in people with CP and the effect of exercise on promoting metabolic health.

9.
Gait Posture ; 90: 388-407, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34564011

RESUMO

BACKGROUND: Individuals with cerebral palsy (CP) report physical fatigue as a main cause of limitation, deterioration and eventually cessation of their walking ability. A consequence of higher level of fatigue in individuals with CP leads to a less efficient and long-distance walking ability. RESEARCH QUESTION: This systematic review investigates the difference in 1) walking energy expenditure between individuals with CP and age-matched typically developing (TD) individuals; and 2) energetics of walking across Gross Motor Function Classification System (GMFCS) levels and age. METHODS: Five electronic databases (PubMed, Web of Science, CINAHL, ScienceDirect and Scopus) were searched using search terms related to CP and energetics of walking. RESULTS: Forty-one studies met inclusion criteria. Thirty-one studies compared energy expenditure between CP and age-matched controls. Twelve studies correlated energy expenditure and oxygen cost across GMFCS levels. Three studies investigated the walking efficiency across different ages or over a time period. A significant increase of energy expenditure and oxygen cost was found in individuals with CP compared to TD age-matched individuals, with a strong relationship across GMFCS levels. SIGNIFICANCE: Despite significant differences between individuals with CP compared to TD peers, variability in methods and testing protocols may play a confounding role. Analysis suggests oxygen cost being the preferred/unbiased physiological parameter to assess walking efficacy in CP. To date, there is a knowledge gap on age-related changes of walking efficiency across GMFCS levels and wider span of age ranges. Further systematic research looking at longitudinal age-related changes of energetics of walking in this population is warranted.


Assuntos
Paralisia Cerebral , Metabolismo Energético , Fadiga , Humanos , Caminhada
10.
J Biomech ; 126: 110635, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34303895

RESUMO

Satellite cells (SCs) are quiescent, adult skeletal muscle stem cells responsible for postnatal muscle growth and repair. Children with cerebral palsy (CP) have muscle contractures with reduced SC abundance, extracellular matrix abnormalities and reduced serial sarcomere number resulting in greatly increased in vivo sarcomere length, perhaps due to impaired sarcomere addition, compared to children with typical development (TD). Stretch is a strong activator of SCs that leads to addition of sarcomeres during bone-muscle growth. Mechanical loading and subsequent deformation of intracellular structures can lead to activation and proliferation, perhaps by cytoskeletal transmissions of extracellular mechanical signals to the nuclei. The primary aim of this study was to determine the effect of ex vivo stretch-induced sarcomere length change on SC deformation in children with CP and TD. Muscle biopsies were obtained from twelve children (7 CP, 5 TD) during surgery. Fiber bundles were labeled with fluorescent antibodies for Pax7 (SC), DRAQ5 (nuclei), and alpha-actinin (sarcomere protein). Fibers were stretched using a custom jig and imaged using confocal microscopy. SC nuclear length, height and aspect ratio underwent increased deformation with increasing sarcomere length (p < 0.05) in both groups. Slopes of association for SC nuclear length, aspect ratio and sarcomere lengths were similar between CP and TD. Our results indicate that SC in children with CP undergo similar deformation as TD across sarcomere lengths.


Assuntos
Paralisia Cerebral , Contratura , Criança , Humanos , Músculo Esquelético , Mioblastos , Sarcômeros
11.
Circ Res ; 128(12): 1851-1867, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34110902

RESUMO

Walking exercise is the most effective noninvasive therapy that improves walking ability in peripheral artery disease (PAD). Biologic mechanisms by which exercise improves walking in PAD are unclear. This review summarizes evidence regarding effects of walking exercise on lower extremity skeletal muscle in PAD. In older people without PAD, aerobic exercise improves mitochondrial activity, muscle mass, capillary density, and insulin sensitivity in skeletal muscle. However, walking exercise increases lower extremity ischemia in people with PAD, and therefore, mechanisms by which this exercise improves walking may differ between people with and without PAD. Compared with people without PAD, gastrocnemius muscle in people with PAD has greater mitochondrial impairment, increased reactive oxygen species, and increased fibrosis. In multiple small trials, walking exercise therapy did not consistently improve mitochondrial activity in people with PAD. In one 12-week randomized trial of people with PAD randomized to supervised exercise or control, supervised treadmill exercise increased treadmill walking time from 9.3 to 15.1 minutes, but simultaneously increased the proportion of angular muscle fibers, consistent with muscle denervation (from 7.6% to 15.6%), while angular myofibers did not change in the control group (from 9.1% to 9.1%). These findings suggest an adaptive response to exercise in PAD that includes denervation and reinnervation, an adaptive process observed in skeletal muscle of people without PAD during aging. Small studies have not shown significant effects of exercise on increased capillary density in lower extremity skeletal muscle of participants with PAD, and there are no data showing that exercise improves microcirculatory delivery of oxygen and nutrients in patients with PAD. However, the effects of supervised exercise on increased plasma nitrite abundance after a treadmill walking test in people with PAD may be associated with improved lower extremity skeletal muscle perfusion and may contribute to improved walking performance in response to exercise in people with PAD. Randomized trials with serial, comprehensive measures of muscle biology, and physiology are needed to clarify mechanisms by which walking exercise interventions improve mobility in PAD.


Assuntos
Terapia por Exercício/métodos , Extremidade Inferior , Músculo Esquelético/fisiologia , Doença Arterial Periférica/terapia , Caminhada/fisiologia , Fatores Etários , Envelhecimento , Animais , Capilares/anatomia & histologia , Exercício Físico/fisiologia , Humanos , Isquemia/etiologia , Extremidade Inferior/irrigação sanguínea , Camundongos , Microcirculação , Mitocôndrias Musculares/fisiologia , Denervação Muscular , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/inervação , Junção Neuromuscular/fisiologia , Doença Arterial Periférica/complicações , Ensaios Clínicos Controlados Aleatórios como Assunto , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
12.
iScience ; 24(2): 102061, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659869

RESUMO

Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) have been identified in patients suffering from various degenerative diseases including mitochondrial myopathy, spinal muscular atrophy Jokela type, frontotemporal dementia, and/or amyotrophic lateral sclerosis (ALS). The pathogenic mechanism underlying CHCHD10-linked divergent disorders remains largely unknown. Here we show that transgenic mice overexpressing an ALS-linked CHCHD10 p.R15L mutation leads to an abbreviated lifespan compared with CHCHD10-WT transgenic mice. The occurrence and severity of the phenotype correlates to transgene copy number. Central nervous system (CNS), skeletal muscle, and cardiac pathology is apparent in CHCHD10-R15L transgenic mice. Despite the pathology, CHCHD10-R15L transgenic mice perform comparably to control mice in motor behavioral tasks until very close to death. Although paralysis is not observed, these models provide insight into the pleiotropic nature of CHCHD10 and suggest a contribution of CNS, skeletal muscle, and cardiac pathology to CHCHD10 p.R15L-ALS pathogenesis.

13.
Dev Med Child Neurol ; 63(10): 1194-1203, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33393083

RESUMO

AIM: To compare skeletal muscle mitochondrial enzyme activity and mitochondrial content between independently ambulatory children with cerebral palsy (CP) and typically developing children. METHOD: Gracilis biopsies were obtained from 12 children during surgery (n=6/group, children with CP: one female, five males, mean age 13y 4mo, SD 5y 1mo, 4y 1mo-17y 10mo; typically developing children: three females, three males, mean age 16y 5mo, SD 1y 4mo, 14y 6mo-18y 2mo). Spectrophotometric enzymatic assays were used to evaluate the activity of mitochondrial electron transport chain complexes. Mitochondrial content was evaluated using citrate synthase assay, mitochondrial DNA copy number, and immunoblots for specific respiratory chain proteins. RESULTS: Maximal enzyme activity was significantly (50-80%) lower in children with CP versus typically developing children, for complex I (11nmol/min/mg protein, standard error of the mean [SEM] 1.7 vs 20.7nmol/min/mg protein, SEM 4), complex II (6.9nmol/min/mg protein, SEM 1.2 vs 21nmol/min/mg protein, SEM 2.7), complex III (31.9nmol/min/mg protein, SEM 7.4 vs 72.7nmol/min/mg protein, SEM 7.2), and complex I+III (7.4nmol/min/mg protein, SEM 2.5 vs 31.8nmol/min/mg protein, SEM 9.3). Decreased electron transport chain activity was not the result of lower mitochondrial content. INTERPRETATION: Skeletal muscle mitochondrial electron transport chain enzymatic activity but not mitochondrial content is reduced in independently ambulatory children with CP. Decreased mitochondrial oxidative capacity might explain reported increased energetics of movement and fatigue in ambulatory children with CP. What this paper adds Skeletal muscle mitochondrial electron transport chain enzymatic activity is reduced in independently ambulatory children with cerebral palsy (CP). Mitochondrial content appears to be similar between children with CP and typically developing children.


Assuntos
Paralisia Cerebral/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Mitocôndrias Musculares/enzimologia , Espectrofotometria
14.
Muscle Nerve ; 61(6): 740-744, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32108365

RESUMO

Limb contractures are debilitating complications associated with various muscle and nervous system disorders. This report summarizes presentations at a conference at the Shirley Ryan AbilityLab in Chicago, Illinois, on April 19-20, 2018, involving researchers and physicians from diverse disciplines who convened to discuss current clinical and preclinical understanding of contractures in Duchenne muscular dystrophy, stroke, cerebral palsy, and other conditions. Presenters described changes in muscle architecture, activation, extracellular matrix, satellite cells, and muscle fiber sarcomeric structure that accompany or predispose muscles to contracture. Participants identified ongoing and future research directions that may lead to understanding of the intersecting factors that trigger contractures. These include additional studies of changes in muscle, tendon, joint, and neuronal tissues during contracture development with imaging, molecular, and physiologic approaches. Participants identified the requirement for improved biomarkers and outcome measures to identify patients likely to develop contractures and to accurately measure efficacy of treatments currently available and under development.


Assuntos
Contratura/fisiopatologia , Educação/tendências , Doenças Musculoesqueléticas/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Relatório de Pesquisa/tendências , Paralisia Cerebral/diagnóstico , Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/terapia , Chicago , Contratura/diagnóstico , Contratura/terapia , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/terapia , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/terapia
15.
Clin Orthop Relat Res ; 478(4): 886-899, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32011372

RESUMO

BACKGROUND: Children with cerebral palsy have impaired muscle growth and muscular contractures that limit their ROM. Contractures have a decreased number of serial sarcomeres and overstretched lengths, suggesting an association with a reduced ability to add the serial sarcomeres required for normal postnatal growth. Contractures also show a markedly reduced number of satellite cells-the muscle stem cells that are indispensable for postnatal muscle growth, repair, and regeneration. The potential role of the reduced number of muscle stem cells in impaired sarcomere addition leading to contractures must be evaluated. QUESTIONS/PURPOSES: (1) Does a reduced satellite cell number impair the addition of serial sarcomeres during recovery from an immobilization-induced contracture? (2) Is the severity of contracture due to the decreased number of serial sarcomeres or increased collagen content? METHODS: The hindlimbs of satellite cell-specific Cre-inducible mice (Pax7; Rosa26; n = 10) were maintained in plantarflexion with plaster casts for 2 weeks so that the soleus was chronically shortened and the number of its serial sarcomeres was reduced by approximately 20%. Subsequently, mice were treated with either tamoxifen to reduce the number of satellite cells or a vehicle (an injection and handling control). The transgenic mouse model with satellite cell ablation combined with a casting model to reduce serial sarcomere number recreates two features observed in muscular contractures in children with cerebral palsy. After 30 days, the casts were removed, the mice ankles were in plantarflexion, and the mice's ability to recover its ankle ROM by cage remobilization for 30 days were evaluated. We quantified the number of serial sarcomeres, myofiber area, and collagen content of the soleus muscle as well as maximal ankle dorsiflexion at the end of the recovery period. RESULTS: Mice with reduced satellite cell numbers did not regain normal ankle ROM in dorsiflexion; that is, the muscles remained in plantarflexion contracture (-16° ± 13° versus 31° ± 39° for the control group, -47 [95% confidence interval -89 to -5]; p = 0.03). Serial sarcomere number of the soleus was lower on the casted side than the contralateral side of the mice with a reduced number of satellite cells (2214 ± 333 versus 2543 ± 206, -329 [95% CI -650 to -9]; p = 0.04) but not different in the control group (2644 ± 194 versus 2729 ± 249, -85 [95% CI -406 to 236]; p = 0.97). The degree of contracture was strongly associated with the number of sarcomeres and myofiber area (r =0.80; P < 0.01) rather than collagen content. No differences were seen between groups in terms of collagen content and the fraction of muscle area. CONCLUSIONS: We found that a reduced number of muscle stem cells in a transgenic mouse model impaired the muscle's ability to add sarcomeres in series and thus to recover from an immobilization-induced contracture. CLINICAL RELEVANCE: The results of our study in transgenic mouse muscle suggests there may be a mechanistic relationship between a reduced number of satellite cells and a reduced number of serial sarcomeres. Contracture development, secondary to impaired sarcomere addition in muscles in children with cerebral palsy may be due to a reduced number of muscle stem cells.


Assuntos
Contratura/fisiopatologia , Músculo Esquelético/fisiologia , Sarcômeros/fisiologia , Células-Tronco/citologia , Animais , Paralisia Cerebral/fisiopatologia , Modelos Animais de Doenças , Membro Posterior , Camundongos , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Amplitude de Movimento Articular/fisiologia , Sarcômeros/efeitos dos fármacos , Tamoxifeno/farmacologia
16.
Muscle Nerve ; 55(3): 384-392, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27343167

RESUMO

INTRODUCTION: Muscles add sarcomeres in response to stretch, presumably to maintain optimal sarcomere length. Clinical evidence from patients with cerebral palsy, who have both decreased serial sarcomere number and reduced satellite cells (SCs), suggests a hypothesis that SCs may be involved in sarcomere addition. METHODS: A transgenic Pax7-DTA mouse model underwent conditional SC depletion, and their soleii were then stretch-immobilized to assess the capacity for sarcomere addition. Muscle architecture, morphology, and extracellular matrix (ECM) changes were also evaluated. RESULTS: Mice in the SC-reduced group achieved normal serial sarcomere addition in response to stretch. However, muscle fiber cross-sectional area was significantly smaller and was associated with hypertrophic ECM changes, consistent with fibrosis. CONCLUSIONS: While a reduced SC population does not hinder serial sarcomere addition, SCs play a role in muscle adaptation to chronic stretch that involves maintenance of both fiber cross-sectional area and ECM structure. Muscle Nerve 55: 384-392, 2017.


Assuntos
Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Sarcômeros/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Análise de Variância , Animais , Antígenos CD/metabolismo , Antagonistas de Estrogênios/farmacologia , Matriz Extracelular/efeitos dos fármacos , Citometria de Fluxo , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Moléculas de Adesão de Célula Nervosa/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Sarcômeros/efeitos dos fármacos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Tamoxifeno/farmacologia
17.
Muscle Nerve ; 55(1): 122-124, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27515237

RESUMO

INTRODUCTION: Children with cerebral palsy (CP) exhibit increased energy expenditure during movement, but whether this is due in part to decrements in skeletal muscle mitochondrial oxidative capacity is unknown. Accordingly, we compared fiber-type specific succinate dehydrogenase (SDH) activity in children with CP with typically developing (TD) children. METHODS: SDH activity and myofiber areas of type 1 and 2A fibers were measured in semitendinosus biopsies of both groups (n = 5/group). RESULTS: SDH activity was ∼35% higher in type 1 compared with type 2A fibers, but there were no differences between groups. Average myofiber area was 45% smaller in CP versus TD (P < 0.05), and type 2A fibers were 32% larger than type 1 fibers (P < 0.05) only in TD children. CONCLUSIONS: Fiber-type specific SDH activity is similar between TD children and children with CP. This suggests that increased energy expenditure in children with CP is not related to impaired mitochondrial oxidative capacity. Muscle Nerve, 2016 Muscle Nerve 55: 122-124, 2017.


Assuntos
Paralisia Cerebral/patologia , Fibras Musculares Esqueléticas/enzimologia , Succinato Desidrogenase/metabolismo , Adolescente , Criança , Feminino , Humanos , Laminina/metabolismo , Masculino , Adulto Jovem
18.
J Orthop Sports Phys Ther ; 46(10): 862-873, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27690836

RESUMO

Synopsis It is generally accepted that up to 50% of those with a whiplash injury following a motor vehicle collision will fail to fully recover. Twenty-five percent of these patients will demonstrate a markedly complex clinical picture that includes severe pain-related disability, sensory and motor disturbances, and psychological distress. A number of psychosocial factors have shown prognostic value for recovery following whiplash from a motor vehicle collision. To date, no management approach (eg, physical therapies, education, psychological interventions, or interdisciplinary strategies) for acute whiplash has positively influenced recovery rates. For many of the probable pathoanatomical lesions (eg, fracture, ligamentous rupture, disc injury), there remains a lack of available clinical tests for identifying their presence. Fractures, particularly at the craniovertebral and cervicothoracic junctions, may be radiographically occult. While high-resolution computed tomography scans can detect fractures, there remains a lack of prevalence data for fractures in this population. Conventional magnetic resonance imaging has not consistently revealed lesions in patients with acute or chronic whiplash, a "failure" that may be due to limitations in the resolution of available devices and the use of standard sequences. The technological evolution of imaging techniques and sequences eventually might provide greater resolution to reveal currently elusive anatomical lesions (or, perhaps more importantly, temporal changes in physiological responses to assumed lesions) in those patients at risk of poor recovery. Preliminary findings from 2 prospective cohort studies in 2 different countries suggest that this is so, as evidenced by changes to the structure of skeletal muscles in those who do not fully recover. In this clinical commentary, we will briefly introduce the available imaging decision rules and the current knowledge underlying the pathomechanics and pathophysiology of whiplash. We will then acknowledge known prognostic factors underlying functional recovery. Last, we will highlight emerging evidence regarding the pathobiology of muscle degeneration/regeneration, as well as advancements in neuroimaging and musculoskeletal imaging techniques (eg, functional magnetic resonance imaging, magnetization transfer imaging, spectroscopy, diffusion-weighted imaging) that may be used as noninvasive and objective complements to known prognostic factors associated with whiplash recovery, in particular, poor functional recovery. J Orthop Sports Phys Ther 2016;46(10):861-872. doi:10.2519/jospt.2016.6735.


Assuntos
Acidentes de Trânsito , Traumatismos em Chicotada/diagnóstico por imagem , Tomada de Decisão Clínica , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Músculos do Pescoço/patologia , Músculos do Pescoço/fisiopatologia , Prognóstico , Recuperação de Função Fisiológica , Células-Tronco/fisiologia , Traumatismos em Chicotada/fisiopatologia , Traumatismos em Chicotada/psicologia
20.
Front Aging Neurosci ; 7: 108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097455

RESUMO

Understanding the mapping between individual outcome measures and the latent functional domains of interest is critical to a quantitative evaluation and rehabilitation of hand function. We examined whether and how the associations among six hand-specific outcome measures reveal latent functional domains in elderly individuals. We asked 66 healthy older adult participants (38F, 28M, 66.1 ± 11.6 years, range: 45-88 years) and 33 older adults (65.8 ± 9.7 years, 44-81 years, 51 hands) diagnosed with osteoarthritis (OA) of the carpometacarpal (CMC) joint, to complete six functional assessments: hand strength (Grip, Key and Precision Pinch), Box and Block, Nine Hole Pegboard, and Strength-Dexterity tests. The first three principal components suffice to explain 86% of variance among the six outcome measures in healthy older adults, and 84% of variance in older adults with CMC OA. The composition of these dominant associations revealed three distinct latent functional domains: strength, coordinated upper extremity function, and sensorimotor processing. Furthermore, in participants with thumb CMC OA we found a blurring of the associations between the latent functional domains of strength and coordinated upper extremity function. This motivates future work to understand how the physiological effects of thumb CMC OA lead upper extremity coordination to become strongly associated with strength, while dynamic sensorimotor ability remains an independent functional domain. Thus, when assessing the level of hand function in our growing older adult populations, it is particularly important to acknowledge its multidimensional nature-and explicitly consider how each outcome measure maps to these three latent and fundamental domains of function. Moreover, this ability to distinguish among latent functional domains may facilitate the design of treatment modalities to target the rehabilitation of each of them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA